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Abstract—In the first part of the paper an investigation is made of the capillary evaporation under
free molecular conditions for a nonisothermal case with assumption made of the evaporation occurring
both on a lateral surface and at the bottom. Two modes of reflection from the surface, diffuse and
specular, are considered. In both cases approximate expressions are derived for the fluxes of molecules
at the capillary exit. In the case of diffuse reflection, the flow of molecules leaving the unit lateral
surface and the net surface flow are obtained as well. This expression allowed investigation of the phase
transition at the wall depending on the dimensionless length and temperature drop.

In the second part it is shown that the effect of surface diffusion on the capillary conductivity is
determined by the dimensionless parameter G; equal to the squared ratio of the square mean displace-
ment of a molecule over the surface to the capillary length, and preceding the senior derivative in the
initial integro-differential equation.

In the third part, based on the approximate theory of the mean free molecular path length, an
expression is found for a vapour flow through a high-dispersed porous body when the capillary modei

is an inexact one.

NOMENCLATURE

X . .
x= R dimensionless coordinate;

THE STUDY of mass transfer in capillary-porous bodies
including phase conversions (liquid evaporation) is not
only of physical interest but also of great practical
importance for the design of transpiration cooling and

m, mass of molecule; duration of drying of moist materials. When studying
k, Boltzmann constant; the mechanism of migration of vaporous moisture in
P, ",, pressure and density of saturated vapours, porous bodies the use is usually made of interconnected
respectively; capillary tubes. A porous body is often considered as

o, evaporation (condensation) coefficient; an equivalent conic or slit-like capillary. The relations
, heat necessary for evaporation of one obtained for such a model are extended to real
molecule; capillary-porous moist bodies in order to explain the

L, length of capillary (thickness of layer); mechanism of their drying. In the majority of cases,
R, radius of capillary; however, the models are designed at isothermal con-
n, dimensionless surface density of molecules  ditions, while in real porous bodies liquid evaporates

[no = n{0)is a characteristic value which the
density is referred to];

in the presence of temperature drop. Temperature
drop has an essential effect on the steam pressure

D, surface diffusivity; near the surface of liquid meniscus. Thus, for example,

2 time of adsorption; with temperature fluctuation (204+0:013)°C the relative

u,e, energy of adsorption and activation per one  vapour pressure over the meniscus with a radius of

molecule; 1-47 x 10~ 2 cm changes from 09999 to 0-9992 which

n, volume density of molecules: is equivalent to the decrease in the meniscus radius

N free molecular path length; from 1-47 x 1072 to 1-47 x 10~ *cm, ie. by the order

I cosine of angle between velocity vector and  of two [1]. The model calculations should, therefore,

normal to area yz; be performed with regard for nonisothermity. Besides,

v, mean thermal velocity of molecules; in the majority of cases the moisture transfer in

AT, =T1,-T, capillaries proceeds according to the relationships of

interdiffusion for binary mixture (vapour plus air) with

. correction for the Stefan flow (diffusional region in

Subscripts .

mass transfer) or by the Knudsen formula in case of

0, parameters of the capillary bottom; rarefied medium (kinetic region of mass transfer). The

1, exit parameters; second case is very often considered in the works on
i, isothermal. ice sublimation from a porous body.
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More grounded calculations of vapour transfer in
capillaries with evaporation are presented, for example
in [2], where the account is taken of a thermal slip
in the presence of a temperature drop along the
capillary wall as well as of diffusional (diffusional drift)
and viscous slip. The values of these effects are found
to be comparable with the Stefan flow.

The account taken of film motion of liqueous
moisture over capillary walls contributes to further
improvement of the model mechanism of capillary
transfer [3]. Film motion of moisture is caused by the
difference of liquid chemical potentials near the
capillary wall and in the bulk of liquid. It is the
difference of chemical potentials which creates the
so-called wedging pressure. The wedging pressure is
determined by the pressure difference between the
liquid-solid phase on a flat interface between the liquid
in a thin layer and the bulk of liquid adjacent to
the thin layer. Thus liquid evaporation proceeds not
only on the liquid meniscus in a capillary but also
from capillary walls covered with a thin liquid layer.
Up to now, however, no kinetic consideration has
been given to surface evaporation of a thin liquid layer
covering the capillary walls.

In the paper an attempt is made to describe in
detail the mechanism of vapour transfer with a free-
molecular flow in a thin capillary (microcapillary)
with account taken of evaporation both from the liquid
meniscus and from the lateral side of the capillary in
the presence of a temperature gradient along the
capillary wall. The analysis of such a mechanism has
shown that inside a capillary-porous body partially
filled with liquid the evaporation and condensation
processes may occur. The dimensionless parameters
s and [ are the main characteristic values. The first is
a product of the dimensionless heat of liquid-vapour
phase transition and relative temperature drop along
the capillary, and the second is the capillary length to
radius ratio (dimensionless length of the capillary).

Rough estimation of s for liquid evaporation into
vacuum (T = 220°; T = 10°C) yields s ~ 1-3. Then for
I=s and at [ >1 (i.e. when the capillary length is
greater than the radius), vapour condensation may
occur at the capillary meniscus, while near the exit
evaporation may proceed. However, if [ < 1 (the length
of the capillary is less than its radius) evaporation
takes place at both capillary ends of the same condi-
tions. Thus, the pore structure (/) exerts a considerable
effect on the mechanism of vapour migration. The
value ! is always positive, while s may be negative
as well depending on the sign of the temperature
gradient AT along the capillary (s 2 0). If s <0, then
with [ = —s the mechanism of vapour migration will
differ from that at [ = s. Hence, the direction of the
temperature gradient has an effect on evaporation

and condensation processes in the capillary. This
phenomena is observed only at nonisothermal condi-
tions and may be referred to as the thermal effect of
vaporous moisture migration.

Successive condensation and evaporation in a pore
or capillary over liquid menisci were discussed earlier
as well but these processes were considered to pro-
ceed at isothermal conditions. In the authors’ case
moisture evaporation and condensation in capillary
are determined by the temperature drop along its
length and by the geometry of pores and capillaries
of the body. This s the principle point in the mechanism
of moisture transfer in the capillary under the authors’
consideration.

It was found through a number of investigations
that surface diffusion of vapour or gas contributes
much to the transfer process. Therefore the velocity
of vapour migration along the capillary length depends
not only on the linear diffusion velocity but also on
the time of molecule adsorption on the surface of the
capillary wall, i.e. on the velocity of surface diffusion.
Such a vapour migration mechanism is discussed in
the second part of the paper. The relationships obtained
may be used to analyse the mechanism of drying moist
materials and transpiration cooling of heat-protecting
materials.

To conclude, itis shown how the approximate theory
of the mean free path length may be used for investi-
gation of the kinetics of vapour transfer through a
highly disperse porous body when the capillary model
is inexact.

1. MICROCAPILLARY VAPOUR FLOW INCLUDING
PHASE CONVERSIONS

We shall consider a cylindrical capillary with a flat
bottom (X = 0) from one side, and evaporation (sub-
limation) proceeding both on the lateral surface and
at the bottom. A constant temperature gradient is
prescribed along the capillary. The number of mol-
ecules evaporating from the unit surface per unit time is

. P.(T)
T =0 k)T

It is assumed that the flow of molecules leaving the
unit surface contains a-fraction of evaporating mol-
ecules and 1-a-fraction of reflected molecules. In the
paper diffuse [4] and specular reflections are con-
sidered.

(a) Diffuse reflection
With diffuse reflection, for a flow of molecules from
the unit lateral surface of a capillary the following
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equation is obtained [the flow is referred to the value
i, To) =jo:|:

— PQ(T) <5>1/2
PATHNT

1
+( —oc)[j 1(€)K1(|x—é|)dé+loK(X)}- ey

0

I(x)

The first summand herein describes evaporating mol-
ecules, the second, those getting onto the unit lateral
surface in the vicinity of the point x from the remaining
lateral surface (integral summand) and from the bottom
[1,K(x)] and then reflected

1

L
I, = oy +2i(1 —uO)J IOK@dE 1=
0

The expressions for the functions K(x) and K,(x) are
given in [5]

| 2x2 42 l
S22k 4412 2

dK(x)

K dx

x, K|x)= -

For nonisothermal capillary surface, if the surface
temperature varies by the law

T(x) = Ty(1+ Ax)

and [4] « 1, the pressure p, may be expressed as follows

p.(x) = Bexp{—— kT(x)}
_ _92 4
= Bexp{ T, (1 Ax)}. (2)

In a number of works (for example [6]) it is shown
that for comparatively short capillaries the functions
K(x) and K,(x) may be substituted by exponents with
sufficient degree of accuracy. Thus

K(x) =%exp{—Ix}.

Using approximate expressions for K and K, we
substitute (2) into (1). By differentiating (1) twice and
combining the relation obtained with the initial one,
get the following differential equation

d?I
F—CZI = bexp{sx}, (3)
X
where
A
s= _kQT , 2 =al?, b=a(s?—1?).
0

Solution of (3) for s # +c is of the form

b
3 exp{sx}. 4

I =a exp{cx}+a,exp{ —cx}+ o
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The coefficients a, and a, are sought by substituting
(4) into (1) (assuming that a, = «) and equating the
coefficients at exp{/x} and exp{—Ix}:

exp{s}
s—1

exp{c} exp{—cj b
c—1 P e+l T s2=¢?

1 1-« 7
al[—a—ﬁ—:(exp{c—l}— I)J
1 1—a
+az[2_—l—l+—c(exp{ —(1+C)}—1)}

b o

(s*=cH(s+) |

1

>

b(1 —a)

_———_(sz—cz)(s—l) (exp{s—1I} —1).

In case of s = +¢ [that for « = 1 may be written as
(Q/kT,NAT/T,l) = £ 1], the solution of equation (3)
is expressed as follows

b
I = d} exp{cx} + a) exp{ —cx} +erxp{sx}, 44

where a) and d, as well as a, and g, in (4) are
determined from the system of algebraic equations
obtained after substitution of (4*) into (1).

For the flow of molecules at the capillary exit find
1

N =jonR2[IOK2(1)+2lf

0

I{(x)K(1—x) dx} (5)
where
dK,(x)
dx

In a particular case of « = 1 and s # ¢ for approxi-
mate K(x) and K,(x), obtain from (1) and (5)

= —2IK(x).

N =j0nRZexp{—l}[1 +S—i—l(exp{s+l} - ])}. (6)

Itfollowsfrom (6) thatat ! > s the flow isexpressed by
N = j,nR? <1 - ;>exp{s},

ie. N tends to j,nR?exp{s} being independent of /.
At a =1 and s =0 (isothermal case) the value of
flow independent of ! is found from (1) and (5)

N, = j,nR?.

The same relationship is arrived at, with exact ex-
pressions for the functions K(x) and K,(x). A similar
result is qualitatively explained in [7].

At a # 1 the expressions for I(x) and N become
rather cumbersome. Numerical calculations were per-
formed for ice at T,, = 213°K, with approximate func-
tions K(x), K,(x) and K, (x) being used.
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Fi1G. 1. Flow N at the capillary exit vs [
with diffuse reflection (T, = 213°K, [ =
107 em) —— AT =0°; — AT = —10.

The calculations showed that for o # 1 and AT =0
the flow at the capillary exit at small / increases with /,
and then practically becomes independent of I (Fig. 1).
In case of @ £ 1 AT # 0 the behaviour of the curves
characterizing the flow dependence on ! was more
complicated.

At the lateral surface the net dimensionless flow of
molecules is determined by

—J(x)=1"(x)—I{x) =a[I"(x)—exp{sx}]. (7)

where I~ is a flow of molecules getting onto unit lateral
surface. I~ is sought from the equation

1
(9 = J IOK (Ix—EDdE+ LK. ()
0

Upon determining I from (1), we shall calculate I~
from (8) and then the net molecular flow from (7).

Write the flow J(x) for a particular case of o =1
omitting a cumbersome general formula. At s # +1

2

i exp{(f+1)ix}

2
J(x) =Lexp{—Ix} [ﬁzﬂ

1 B
—ﬁexp{l(2x+/3—l)}-—m} )
where 8 = s/l, and the positive value of J corresponds
to evaporation.

It follows from (9) that the behaviour of J(x) is
determined by [ and B. Thus for 1 < f < exp{l(f—1)}
at x=0 J<0, at x=1 J>0. As to the case of
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f =0, ie. of an isothermal capillary, evaporation
occurs along the whole of its length and the flow J
attains its maximum value at x = 1.

For s = | we have

J(x) = Lexp{ —Ix}[G ~ (1 —x))exp{2ix} —1], (10a)
where s = —/
J(x) = Lexp{—Ix}[1(1 +exp{2l(x— 1)} —Ix]. (10b)

From (10a) it is seen that for [ <1 J(0) >0 and
J(1) > 0, i.e. evaporation takes place at both ends of
the capillary and at [ > 1 J(0) <0, J(1) > 0, ie. with
increasing x transition from condensation to evap-
oration occurs.

Expression (10b) indicates that for all [/ at x =0
evaporation occurs, for x = [ evaporation takes place
at [ < 1 and condensation, at [ > 1.

When evaporation proceeds only at the bottom with
diffuse reflection of molecules from the lateral sur-
face, the flow I may be obtained from (1) assuming
o =0.

(b) Elucidate the effect of specular reflection of molecules
on the net flow at the capillary exit
The number of molecules that evaporated from the
side surface and left the capillary after multiple specular
reflections, is written as follows [8]

1
N, = 27rR21J jlo, T)S,(1—x)dx, (11)
0

where

b X X
S,(x) = K(X)+,,§1 (1—w) ':K<n—:l—_1>_K<;>jl

For the number of molecules evaporated from the
bottom, then multiply reflected from the walls and
left the capillary obtain (by assuming o, = o)

N, = nR%(x, Ty)$, (1), (12)

where

s T )

Besides, the account should be taken of the molecules
which left the capillary after they had evaporated from
the lateral surface, got to the bottom and reflected
specularly from it. They are allowed for approximately
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through substitution by the diffusely reflected mol-
ecules
1

Jla, TYS;(x) dx.
0

N, =2=RAS,(1)(1 —oz)J (13)

The flow at the capillary exit is determined by
summation of (11)—~(13).

It follows from the calculation results for diffuse
and specular reflections that at small [ the values of
exit flows are similar. In case of specular reflection
with increasing ! the rate of flow increase is higher
than with diffuse reflection.

The case of the bottom evaporation with specular
reflection from the bottom and diffuse reflection from
the side surface is considered in the second part of
the manuscript.

2. SURFACE DIFFUSION EFFECT ON FREE-MOLECULAR
VAPOUR FLOW THROUGH A CAPILLARY

Experimental investigation of gas flows in capillaries
at free-molecular regime revealed the difference be-
tween the conductivity measured and that calculated
by the Knudsen formula. One of the reasons of this
differenceis surface diffusion [9]. The latter is explained
by the fact that at low density the molecules adsorbed
on the surface may be considered as two-dimensional
gas and thus in the presence of the density gradient
a two-dimensional diffusion flow takes place which is
described by

s=-p%
s T adX

Some works are known with account taken of the
surface diffusion effect. Thus, in [10] the problem is
considered on the Knudsen flow in a long tube with
surface diffusion flow, wherein the effect of surface
diffusion due to linear dependence of the surface
density on the coordinate shows itself through con-
tribution of this flow to the Knudsen flow.

In other works an integro-differential equation is
solved for the surface density of molecules which in a
limited case of no surface diffusion transits into the
integral Klausing equation. In [11], particularly, the
solution of this equation is built by the iteration
method for the case of a short capillary (I = L/R « 1)
and in [5, 12] a similar problem is solved numerically
for any [ In these studies, however, no investigation
is made of the effect of different terms in the integro-
differential equation on the capillary conductivity.

This part of the manuscript deals with an approxi-
mate analytical investigation of a free-molecular
vapour flow with regard for surface diffusion in a
cylindrical capillary bounded by a flat surface of
evaporating liquid from one side (X = 0) and connected
with the tank filled with the vapours of this liquid,
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from the other (X = L). The surface of liquid is char-
acterized by the specular reflection coefficient g.

An integro-differential equation for the surface
density of molecules is of the form

- ) S
Jii[ns(x)ﬂ’l J ) J ne)
L7 dx dx 1(x) o T(€)

. o q: Mo N,
[K,(|x =&+ 0K, (x+&)]dé~ - K(.\')—'; (14)

g 1y

[K(l —x)+ oK(1 +x)].

Here N, and N, are flows of molecules diffused from
the unit surface of the bottom and of those from the
tank passed through a unit area of the open end,
respectively.

In equation (14) the term in the left-hand side is
specified by the surface diffusion of molecules. The
integral term in the right-hand side corresponds to the
flow of molecules falling per unit surface of the capillary
side from the remaining surface as a result of desorp-
tion by the cosine law (the first summand) and of
specular reflection from the bottom (the second
summand).

The first term out of the integral sign describes a
flow of molecules diffusing from the bottom and falling
per unit surface of a capillary, the second and third
terms are flows of molecules entering the capillary
through the open end and falling onto the wall directly
and after specular reflection from the bottom.

We shall formulate the boundary conditions for
integro-differential equation (14). It should be noted
that surface diffusion takes place not only in a capillary
but on an internal surface of the tank as well. In this
case it is considered that at a distance of the order of
X = 1/\/ER1 adsorption equilibrium is achieved on the
tank surface, i.e. the density of molecules (dimentional)
is determined by

n, = Nt,.

Then for the open end of the capillary, with account
taken of the conjugation conditions (equality of den-
sities and fluxes) on the capillary—tank interface, the
following condition of the third kind may be written

d
d—n~ = L\E(ne—n), (15)
X

where

For correct formulation of the boundary condition
at x = 0 the values characterizing the kinetics of two-
dimensional evaporation should be prescribed [13].
Since there are no such data available in the literature,
the use is made of the following condition

n0) = 1. (16)
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The flows N, and N, have been determined by the
formulae
Ny =(1—0) P, Py

QamkT,)72 ' QumkT,)?
(a) Isothermal case

Assuming t = const, D, = const and substituting
K(x) by the exponent, from (14) we get

d’n

l 1
GLd~x~5 = n(x)—EJ n(é)[exp{—1x—¢[}

0

+oexp{—I(x+¢&)}]d¢ ““jzvniexP{ —Ix}
0

—lll [exp{—I(1—x}} +oexp{—I(1+x)}], (17
2n,

where
1

GL:‘E"P'

It follows from (17) that the larger the dimensionless
parameter G, , the greater contribution of the surface
diffusion into # distribution over the capillary surface.
In particular, at G, » 1 the density n is found by
solution of the equation

d%n

dx?
with boundary conditions (15) and (16), i.e. it varies
linearily

5 LV/E@m—1)
1+LJE

On the other hand, in case of G, « 1 equation (17)
possesses a minor parameter at a major derivative.
Therefore, at any infinitesimal values of G, at the
capillary ends the regions (boundary layers) exist
where a differential term in equation (17) should be
regarded for, i.e. the minor parameter method being
used, the disturbed solution will not be equally ap-
plicable for the whole range of x variation. This non-
uniformity is known [14] to be displayed when the
perturbation parameter is a ratio of two lengths. In
the present problem G;/? is a ratio of the mean square
displacement of a particle over the surface 1 /\/}:T to
the capillary length L.

To solve equation (17) it is differentiated twice
over x. Combination of the expression obtained with
initial equation (17) yields

d*n d?n

n =1+ Bx,

a;z*é’%d—xz=o, C%=12+Ggl. (18)
Solution of equation (18) is written as follows
n=a, exp{—cx} +a,exp{—c,(1-x)}
+a,x+a,. (19)
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By substituting (19) into (18) and equating the co-
efficients at exp{—Ix} and exp{Ix}, we obtain two
equations for a,, a,, a; and a, determination. Two
other equations are sought from boundary conditions
(15) and (16). Hence, to calculate four unknown co-
efficients a system of four linear equations should
be solved

g

l ! -1
a, [r_»c—1+l+c1(exp{—(cl+ N - )}

g

1 o
1| (~— - -1
+a, [<l+c1+c1—l>exP{ ¢} Cl_lexp{ }:,

+%§[—1—a+aexp{—l}(l+1)]

+a,(l—o+oexp{-1})= ni(No-i—rfN1 exp{—1}),
0
la, la, I+1 Nt
— _ _$+ =—
e, exp{ cl}+l_61+a3 Tt e

a exp{—c;}(1—¢,G?) +a,(1+¢,GL?)
+a,(1+G) +ay =n,,
a,+a,exp{—c,}+a,=1. (20)

To investigate the solution obtained, numerical
calculations have been performed. Of particular interest
is the case of G « 1 (note that for G, = 0 solution of
equation (17) is a linear function). As it could be
expected, for such values of G, the existence of bound-
ary layers is distinctly seen at the capillary ends and
in the middle the curve n(x) transits intdo a.linear
function (Fig. 2) whose slope coincides with that of a
straight line being a solution of equation (14) at G, = 0.
The explanation is that in this range the right-hand
side of equation (17) makes a major contribution into
its solution. This peculiarity of the dependence of n on x
at Gy « 1 is seen in the figure where the results of

FiG. 2. Surface density of molecules vs
longitudinal coordinate.
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numerical calculations are presented for water with the
following parameters: G, =4 x107%; I=01; 6 =0
and 0-8; T = 300°K ; p, = 3430 N/m?; p, = 490 N/m?.

As to the flows in case of G, being of the order of
unity, the curve n(x) cannot be divided into three zones.

The net flow of molecules at the capillary exit is
equal to the sum of surface diffusion flow N(1)=
27RJ (1) and flow of molecules N(1) emitting through
the open end of the capillary. It should be kept in
mind that at Gg > 1, Ng>» N and at G« 1 N < N
{since Gy = I/ER* characterizes the ratio of conduc-
tivities due to surface and Knudsen diffusion).

The expression for N is of the form
N = R*{N,K,(1)= N,[1 =K, (2)]}

2 1
+§ﬂ%@ﬁ n(O[K (1 —x)+ oK (1 +x9)]dx. (1)
0

Here the first term describes a flow of molecules
that diffused from the bottom and covered the distance
L without collisions. The second term is a flow of
molecules entering the capillary through the open end.
The third term stands for a flow of molecules which
reached the bottom without collisions, reflected specu-
larly from it and then emitted through the open end.
The integral term characterizes the flow of molecules
desorbed by the internal surface of the capillary and
left it without collision against the wall and after
specular reflection from the bottom.

The comparison of the approximate analytical solu-
tion of equation (14) and its numerical solution for
the exact function K(x) has shown that there is but
slight difference between the values of n(x) correspond-
ing to exact and approximate expressions for K(x),
this difference increasing with decrease of G, and
increase of I. As for the appropriated values of N, they
differ from one another in a greater degrec than those
of n(x) do.

In (21), in order to decrease the calculation errors,
an exact solution for the function K(x) should be used
rather than an approximate one. For G, « I, however,
integration of the terms with 4, and «, yields a small
contribution into the value of N. To simplify in-
tegration, therefore, in (21) an approximate exponential
expression for K(x) may be particularly used (in the
summands including ¢, and a,).

With no surface diffusion, we have for N relation-
ship (21} wherein n(x) is the solution to integral
equation (17) at G, =0 with an exponential kernel,
i.e. it is a linear function. This allows casy calculation
of the integral term in (21) with exact kernel K(x).
In case of L > R and N, =0, particularly, obtained

within R2/L2
TR N 60 R
N=it Do [ P70
3L 7 L

R
t—o+2 -
L

967

This expression is a generalization of the known
Knudsen formula [15] for the case of evaporation
from a finite length capillary. To compare, it should
be noted that the exact Knudsen formula (L/R > |,
o =0) includes coefficient 8/3, and when the expo-
nential kernel is used in (21), cocflicient 2.

(b) Nonisothermal case
The values t and D, are related with the surface
temperature as follows [9]

u &
Fnaply P Denn) - krm}'

Assume that T = T,(1 4+ Ax) and 4 « 1. Then lin-
earization and substitution of the variable

reduce equation for n; to the form similar to that in
case of an isothermal capillary except for the fact that
in the left-hand side a term containing the first variable
dn,/dx appears. Herein, the ratio of the coefficients
of the first and second derivatives

AT ¢—2u

L=

YT, kT

Since from an approximate analysis [9] follows that
3 < &/u <3, and w/kT, » 1, the order of the magnitude
of y is equal to AT/T, x w/kT,. If y =1, then at
G, (0) < 1, i.e. in case of short boundary layers the term
containing the second derivative is much greater than
the summand with the first derivative. Hence, the
solution of the equation for #, can be presented in
the form
() ~ "o

T.

i

””:mwnw{ll}z%ﬁmw

- - (22)
kT(x) T;

everywhere but in the nearest vicinity of the open end
(where the temperature T, cffect appears due to the
boundary condition at the exit (15)).

The flow N at the capillary exit is expressed by the
formula differing from (21) only by 1/z(x) included in
the subintegral expression. Because of relationship (22),
nonisothermity has almost no effect on the integral
for |A| « 1. The first summand in (21) depends only
on Ty. Two other ones containing the flow Ny depend
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on T, '? but since T, = Ty(1+A) and |A| « 1 this
dependence is not significant. At low temperature
drop the flow N, therefore, is independent of the non-
isothermity, while the surface densities n(x) for 4 =0
and A # 0 are essentially different. Hence, in a non-
isothermal case the net molecular flow N+ N, differs
from the appropriate flow in an isothermal capillary
{since N, = — [2=D (1)ny/1][dn/dx](1)}.

The numerical solution to equation (14) for the case
of ice evaporation showed the validity of the above
considerations and expression (22), in particular. As
to the cases of G,(0) = 1, i.e. the absence of boundary
layers, and of }A] ~ 1, i.e. high temperature drops.
equation (14) was solved numerically to determine n(x)
and N.

3. THE KINETICS OF VAPOUR TRANSFER
THROUGH A POROUS BODY

We shall consider a plane-parallel layer of a high-
dispersed porous body limited with evaporating liquid
from below and with its vapours from above. The
system is under isothermal conditions.

The transient vapour flow regime that is often
encountered in technological processes is the most
complicated to be theoretically described. Consider
the vapour flow through a dry layer of a porous body
by representing the porous body-gas system as binary
mixture. The molecules of one of the components are
fixed, their sizes and mass greatly exceed the sizes and
mass of the second component (real gas) [16-18].

The account is taken of, that the possibility of
covering the distance X by a molecule without collision
is exp{ —(X/A)} [19] Below it is assumed that the free
molecular path length is constant. In the model under
consideration A is of the form [19,20]

1 { {

P,

}”12

where A, is free path length of real molecules relative

’

to the molecules themselves; 4,, is free path length of |

real molecules relative to fixed molecules. When deter-
mining 4, the account should be taken of the proper
volume of fixed molecules and the possibility of their
mutual overlapping.

Consider the interface between evaporating liquid
and porous body. The evaporating liquid occupies the
portion IT of the whole surface area. The part of the
surface | —IT is occupied with solid particles of the
porous body and reflects diffusely all the molecules
that fell on it.

The total flow of molecules passing through the dry
layer of porous body in the direction of the axis X
consists of the difference between the number of mol-
ecules flying upwards and those flying downwards. At
steady state this flow does not depend on the coordinate
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and, with the above in view, is of the form

211 n L
N= {(2nmka’;);”2 +4dl —aH)[Lf ,”fé)” E, (é 7) d

0

p(1) LY L
o 57 ) 507

w@e (LN, [t
+LJO *Z—‘E2<7(‘C‘g)>dg_LJ 72}(-

L .2
Ez (7 (f'x)> d¢ _@W

x E, (L“fx)) (23)
i
! x
E (x)= J w2 exp{~——} du.
0 H

In equation (23) the first four terms present the
number of molecules passing upwards through the
plane yz being at a distance of X from the liquid
surface. They include evaporated molecules, those
scattered in the layer between the evaporating sur-
face and the plane yz, the molecules which scattered
in the layer with the thickness L, fell onto the bound-
ary surface and diffusely reflected from it, and the
molecules from the volume over the porous body
diffusely reflected from the boundary surface. Two last
terms are the molecules from the gas medium over
the porous body and those collided in the porous body
of thickness L-X.

Equation (24) when being in a general form fails to
be solved. Therefore, the functions E, and E; are sub-
stituted by exponential functions similarly to [21].

By differentiating twice equation (23) and combining
the expression obtained with the initial one, we arrive
at a differential equation for the molecular density.
From the equation derived and (23) obtain the ex-
pression for a flow of molecules

x

where

MTe p,—p(l)
N =% PP 2%
(2amkT)Y? 42+ 3 Lall 29

At /L — oo find from (24) an expression for evap-
oration from free surface

Pe—P

N, = ol - —
0 = X mk )2

At J/L—0 we get an ordinary expression for a
diffusion flow if in the given diffusional approximation,
it s assumed that n, = n(0):
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In a transient case, a flow of particles depends on
the coordinate and time. Consider the case when
ol = 1. Under zeroth initial conditions with the use of
the Laplace transformation and the assumptions made
when solving equation (23), it is easy to show that the
equation for a flow of molecules in dimensionless
coordinates (¢, = t/t*, t* is characteristic time of the
problem) is of the form

4(ANEN (ANEN
9\L) ox? "\er*) o
A 0N 1

+N+2— — = —-v- .
cr* 0ty 3 L &x

'

(25)

Since A/L and i/ct* are usually small, we retain in the
equation the terms of the first order of smallness. Then
equation (25) takes the form

AN 1 A

Ly b
ct* ét* 3 L Ox*

~
cn

N=-2

where the first term from the right accounts for the
finite velocity of mass propagation ¢ [1].
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ETUDE EXPERIMENTALE DU TRANSFERT DE VAPEUR
A TRAVERS UN CORPS POREUX

Résumé—Dans la premiére partie de I'article on étudic Iévaporation capillaire dans des conditions de
régime moléculaire libre pour un cas non isotherme. en supposant que I'évaporation se fait a la fois sur
la surface latérale et sur le fond. On considére deux modes de réflexion sur la surface. soit diffus soit
spéculaire. Dans les deux cas on obtient des expressions approchées des flux de molécules a la sortie du
milieu capillaire. Dans le cas de la réflexion diffuse. on obtient & la fois le flux de molecules quittant
l'unité de surface et le flux net surfacique. On étudic la transition de phase a la paroi en fonction d’une

longueur adimensionnelle et de la chute de pression.

Dans la scconde partie. on montre que l'effet de la diffusion en surface. sur la conductivité capillaire
est déterminé par le paramétre adimensionnel G; égal au rapport de la racine carrée de la moyenne
quadratique du déplacement d’'une molécule en surface. a la longueur capillaire. On traite I'équation

intégro-différenticlle initiale.

Dans la troisieme partic basée sur la théoric approchée du libre parcours moyen, on trouve une
expression pour un écoulement de vapeur a travers un corps poreux fortement dispersé quand le modéle
capillaire n'est plus exact.
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THEORETISCHE UNTERSUCHUNG DER DAMPFUBERTRAGUNG
DURCH EINEN KAPILLAR-POROSEN KORPER

Zusammenfassung —Im ersten Teil der Arbeit wird cine Untersuchung der kapillaren Verdampfung unter
der Bedingung freier Molekularbewegung fiir einen nicht isothermen Fall behandelt, wobei vorausgesetzt
ist, daB die Verdampfung an der Seitenwand und am Boden stattfindet. Zwei Arten der Reflexionen
von der Oberfliche. diffus und spiegelnd, werden betrachtet. Fiir beide Fille werden Nidherungsbezie-
hungen fiir den Molekularstrom am Kapillarende abgeleitet. Im Fall der diffusen Reflexion stimmen
der Molekularstrom an den Seitenflichen und der reine Oberflichenstrom iiberein. Dieser Ausdruck
crlaubt Untersuchungen des Phaseniiberganges an der Wand. der von der dimensionslosen Lénge und
der Temperaturdifferenz abhiéngt.

Im zweiten Teil wird gezeigt, daB die Wirkung der Oberflichendiffusion auf die kapillare Leitfahigkeit
durch den dimensionslosen Parameter G, bestimmt wird. der gleich dem Quadrat des Verhiltnisses
von mittlerer quadratischer Verschiebung eines Molekiils iiber die Oberfliche zur Kapillarldnge ist; dies
erginzt die frithere Ableitung der integralen Differentialgleichung in ihrer Ausgangsform. Im dritten
Teil wird. wenn das Kapillarmodell zu ungenau ist, mit der Niherungstheorie einer mittleren freien,
molekularen Weglinge eine Beziehung fiir einen Dampfstrom durch einen hoch dispersen. pordsen

Kdrper angegeben.

TEOPETUYECKOE UCCJIEAOBAHUE MPOLIECCA TMEPEHOCA TMAPA YEPE3
KATTUWJIJTAPHO-MTOPUCTOE TEJIO

AnHoTanns — B MepBoi 4acTH HecnenoBaHo HCTiapEHHE U3 KANMILTSPA B YCIOBHAX CBOGOAHOMOIEKY-
JIAPHOTO PEXMMA 15 HEM3OTEPMHUUECKOTO Cllyyas B NPEAMOTOKEHHH, YTO HCMapeHHe MPOUCKOAUT
KaK Ha GOKOBOM MOBEPXHOCTH, TaK U HA AHE. PaccMOTpeHb! 1BE CXEMBI OTPAKEHHS OT MOBEPXHOCTH —
anddysnas v epkanbian. B oboux clydasx mosyqeHbl NpUOMMKEHHbIE BbIPAXEHHS A1 NOTOKOB
MOJIEKY.T HA BBIXOAE M3 KAMWLIAPA, a PH ANdQY3HOM OTPaXKeHHUH HAASHBI TAKKE TOTOK MOAEKYT,
BBINETAIOLIMX C eAMHULbI OOKOBOH MOBEPXHOCTH, M Pe3yJbTUPYIOUMIT MOTOK Ha MOBEPXHOCTH.
Mocnenuee BoipaxeHue NO3BOJNIO HCCEAOBATE XapakTep (Ba3oBOrO MEPEXOAd HA CTEHKE B 3aBHCH-
MOCTH OT 6€3pa3MEpHbIX INTHHbL K TeMOepaTypHOrO nepenana.

Bo BTOpO# 4acTH paboTsl Noka3aHo, YTO BAHAHME IOBEPXHOCTHON AHBGY3NM HAa IPOBOAUMOCTD
Kanmuaspa onpeaesercs Ge3pa3MepHbiM NapaMeTpoM G, PABHLIM KBAAPATY OTHOLUICHHUS CPeHe-
KBAaJPAaTHYHOTO CMELLICHUS MOJEKY/bl N0 MOBEPXHOCTH K AJIMHE KANWILIAPA W CTOSIUMM nepes
crapuieil NpoH3BOAHOH B MCXOAHOM MHTETPO-aIud(EepeHUHATLHOM YPaBHEHHH.

B TpeTpeii wacTu paboTbl Ha 0cHOBE NPUONIKEHHON TeOpUK cpenHeil Annnb csoGonHoronp obera
HallZICHO BBIPAXEHHUE /1A NIOTOKA [1APa YEPE3 BbICOKOANCTIEPCHOE MOPUCTOE TENO, KOTa KalMLIAPHAS

MO/IC/Tb ABJSACTCA HETOYHOU.



