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Abstract--In the first part of the paper an investigation is made of the capillary evaporation under 
free molecular conditions for a nonisothermal case with assumption made of the evaporation occurring 
both on a lateral surface and at the bottom. Two modes of reflection from the surface, diffuse and 
specular, are considered. In both cases approximate expressions are derived for the fluxes of molecules 
at the capillary exit. In the case of diffuse reflection, the flow of molecules leaving the unit lateral 
surface and the net surface flow are obtained as well. This expression allowed investigation of the phase 
transition at the wall depending on the dimensionless length and temperature drop. 

In the second part it is shown that the effect of surface diffusion on the capillary conductivity is 
determined by the dimensionless parameter G L equal to the squared ratio of the square mean displace- 
ment of a molecule over the surface to the capillary length, and preceding the senior derivative in the 
initial integro-differential equation. 

In the third part, based on the approximate theory of the mean free molecular path length, an 
expression is found for a vapour flow through a high-dispersed porous body when the capillary model 

is an inexact one. 
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dimensionless coordinate; 

mass of molecule; 
Boltzmann constant; 
pressure and density of saturated vapours, 
respectively; 
evaporation (condensation) coefficient; 
heat necessary for evaporation of one 
molecule; 
length of capillary (thickness of layer); 
radius of capillary; 
dimensionless surface density of molecules 
[n o = n(0) is a characteristic value which the 
density is referred to];  
surface diffusivity; 
time of adsorption; 
energy of adsorption and activation per one 
molecule; 
volume density of molecules; 
free molecular path length; 
cosine of angle between velocity vector and 
normal to area yz; 
mean thermal velocity of molecules; 

=L-T0. 

parameters of the capillary bottom; 
exit parameters; 
isothermal. 
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THE STUDY of mass transfer in capillary-porous bodies 
including phase conversions (liquid evaporation) is not 
only of physical interest but also of great practical 
importance for the design of transpiration cooling and 
duration of drying of moist materials. When studying 
the mechanism of migration of vaporous moisture in 
porous bodies the use is usually made of interconnected 
capillary tubes. A porous body is often considered as 
an equivalent conic or slit-like capillary. The relations 
obtained for such a model are extended to real 
capillary-porous moist bodies in order to explain the 
mechanism of their drying. In the majority of cases, 
however, the models are designed at isothermal con- 
ditions, while in real porous bodies liquid evaporates 
in the presence of temperature drop. Temperature 
drop has an essential effect on the steam pressure 
near the surface of liquid meniscus. Thus, for example, 
with temperature fluctuation (20_+0.013)°C the relative 
vapour pressure over the meniscus with a radius of 
1.47 x 10 2 cm changes from 0"9999 to 0.9992 which 
is equivalent to the decrease in the meniscus radius 
from 1.47 x 10 2 to 1"47 x 10-4cm, i.e. by the order 
of two [1]. The model calculations should, therefore, 
be performed with regard for nonisothermity. Besides, 
in the majority of cases the moisture transfer in 
capillaries proceeds according to the relationships of 
interdiffusion for binary mixture (vapour plus air) with 
correction for the Stefan flow (diffusional region in 
mass transfer) or by the Knudsen formula in case of 
rarefied medium (kinetic region of mass transfer). The 
second case is very often considered in the works on 
ice sublimation from a porous body. 
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More grounded calculations of vapour transfer in 
capillaries with evaporation are presented, for example 
in [2], where the account is taken of a thermal slip 
in the presence of a temperature drop along the 
capillary wall as well as of diffusional (diffusional drift) 
and viscous slip. The values of these effects are found 
to be comparable with the Stefan flow. 

The account taken of film motion of liqueous 
moisture over capillary walls contributes to further 
improvement of the model mechanism of capillary 
transfer [3]. Film motion of moisture is caused by the 
difference of liquid chemical potentials near the 
capillary wall and in the bulk of liquid. It is the 
difference of chemical potentials which creates the 
so-called wedging pressure. The wedging pressure is 
determined by the pressure difference between the 
liquid-solid phase on a flat interface between the liquid 
in a thin layer and the bulk of liquid adjacent to 
the thin layer. Thus liquid evaporation proceeds not 
only on the liquid meniscus in a capillary but also 
from capillary walls covered with a thin liquid layer. 
Up to now, however, no kinetic consideration has 
been given to surface evaporation of a thin liquid layer 
covering the capillary walls. 

In the paper an attempt is made to describe in 
detail the mechanism of vapour transfer with a free- 
molecular flow in a thin capillary (microcapillary) 
with account taken of evaporation both from the liquid 
meniscus and from the lateral side of the capillary in 
the presence of a temperature gradient along the 
capillary wall. The analysis of such a mechanism has 
shown that inside a capillary-porous body partially 
filled with liquid the evaporation and condensation 
processes may occur. The dimensionless parameters 
s and / are the main characteristic values. The first is 
a product of the dimensionless heat of liquid-vapour 
phase transition and relative temperature drop along 
the capillary, and the second is the capillary length to 
radius ratio (dimensionless length of the capillary). 

Rough estimation of s for liquid evaporation.into 
vacuum (To = 220°; T = 10"C) yields s -~ 1.3. Then for 
l =  s and at / > 1  (i.e. when the capillary length is 
greater than the radius), vapour condensation may 
occur at the capillary meniscus, while near the exit 
evaporation may proceed. However, if I < 1 (the length 
of the capillary is less than its radius) evaporation 
takes place at both capillary ends of the same condi- 
tions. Thus, the pore structure (l) exerts a considerable 
effect on the mechanism of vapour migration. The 
value l is always positive, while s may be negative 
as well depending on the sign of the temperature 
gradient AT along the capillary (s ~ 0). If s < 0, then 
with 1 = - s  the mechanism of vapour migration will 
differ from that at / = s. Hence, the direction of the 
temperature gradient has an effect on evaporation 

and condensation processes in the capillary. This 
phenomena is observed only at nonisothermal condi- 
tions and may be referred to as the thermal effect of 
vaporous moisture migration. 

Successive condensation and evaporation in a pore 
or capillary over liquid menisci were discussed earlier 
as well but these processes were considered to pro- 
ceed at isothermal conditions. In the authors' case 
moisture evaporation and condensation in capillary 
are determined by the temperature drop along its 
length and by the geometry of pores and capillaries 
of the body. This is the principle point in the mechanism 
of moisture transfer in the capillary under the authors' 
consideration. 

It was found through a number of investigations 
that surface diffusion of vapour or gas contributes 
much to the transfer process. Therefore the velocity 
of vapour migration along the capillary length depends 
not only on the linear diffusion velocity but also on 
the time of molecule adsorption on the surface of the 
capillary wall, i.e. on the velocity of surface diffusion. 
Such a vapour migration mechanism is discussed in 
the second part of the paper. The relationships obtained 
may be used to analyse the mechanism of drying moist 
materials and transpiration cooling of heat-protecting 
materials. 

To conclude, itis shown how the approximate theory 
of the mean free path length may be used for investi- 
gation of the kinetics of vapour transfer through a 
highly disperse porous body when the capillary model 
is inexact. 

I. MICROCAP1LLARY VAPOUR FLOW INCLUDING 
PHASE CONVERSIONS 

We shall consider a cylindrical capillary with a fiat 
bottom (X = 0) from one side, and evaporation (sub- 
limation) proceeding both on the lateral surface and 
at the bottom. A constant temperature gradient is 
prescribed along the capillary. The number of mol- 
ecules evaporating from the unit surface per unit time is 

Pe(T) 
j(o:, T) = ~ (2~mk r) l /2  . 

It is assumed that the flow of molecules leaving the 
unit surface contains s-fraction of evaporating mol- 
ecules and 1-a-fraction of reflected molecules. In the 
paper diffuse [-4] and specular reflections are con- 
sidered. 

(a) Diffuse reflection 
With diffuse reflection, for a flow of molecules from 

the unit lateral surface of a capillary the following 



Theoretical investigation of vapour transfer 

equation is obtained [the flow is referred to the value 

j(1, To) =J0] :  

Pe(T) ( T o ~  1/2 

I(x) = ~ Pe(To) \ ~ } 

The first summand herein describes evaporating mol- 
ecules, the second, those getting onto the unit lateral 
surface in the vicinity of the point x from the remaining 
lateral surface (integral summand) and from the bottom 
[loK(x)] and then reflected 

f0 I o = c%+2/(1 - % )  I(~)K(~)d~, l = - - .  
R 

The expressions for the functions K(x) and Kl(x ) are 
given in [5] 

12X2+2 1 dK(x) 
K(x)=2(12x2+4)l/2 2 x' Kl(x)- dx 

For nonisothermal capillary surface, if the surface 
temperature varies by the law 

T(x) = To(1 + Ax) 

and I A I << 1, the pressure Pe may be expressed as follows 

Bexp - Q ~  Pe(X)= t kT(x) } 

= B e x p { - k @  ° ( 1 - A x ) } .  (2) 

In a number of works (for example [6]) it is shown 
that for comparatively short capillaries the functions 
K(x) and Kl(x) may be substituted by exponents with 
sufficient degree of accuracy. Thus 

K(x) = ½ exp{ - Ix}. 

Using approximate expressions for K and K 1 we 
substitute (2) into (1). By differentiating (1) twice and 
combining the relation obtained with the initial one, 
get the following differential equation 

d2I 
dx 2 - -  c2I = b exp{sx}, (3) 

where 

QA C2 = s = - -  = M 2, b ~(s 2_12). 
kT o' 

Solution of (3) for s 4 = + c is of the form 

b 
I = a I exp{cx} + a 2 exp{ -cx} + s ~ c  2 exp{sx}. (4) 
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The coefficients a 1 and a 2 are sought by substituting 
(4) into (1) (assuming that % = ~) and equating the 
coefficients at exp{lx} and exp{ - I x } :  

exp{c} exp{-c}  b exp{s} 
al c - I  a2 c+l $2-c 2 s - l '  

a l [ - c ~ l  +~_~l (exp{c-l} - 1); 

a I - + 2'exp/-"+c'/ l'l 
b c~ 

(S2--C2)(sWl) I 

b(1 - c  0 
(s 2 - c2)(s- l) (exp { s -  l} - 1). 

In case of s = _+ c [that for c~ = 1 may be written as 
(Q/kTo)(AT/Tol) = + 1], the solution of equation (3) 
is expressed as follows 

b 
I = a' 1 exp{cx} + a 2 exp{ - cx} + ~ x exp{sx}, (4 l) 

t t where a 1 and a 2 as well as a 1 and a 2 in (4) are 
determined from the system of algebraic equations 
obtained after substitution of (41) into (1). 

For the flow of molecules at the capillary exit find 

where 

dK2(x) - 21K(x). 
dx 

In a particular case of c~ = 1 and s ¢ c for approxi- 
mate K(x) and K2(x), obtain from (1) and (5) 

N =jo~RZexp{-l}I1 + ~ + / ( e x p { s + l } - l ) ] .  (6) 

It follows from (6) that at I >> s the flow is expressed by 

 :j(1 
i.e. N tends to j0zrR 2 exp{s} being independent of I. 

At e = 1 and s = 0 (isothermal case) the value of 
flow independent of I is found from (1) and (5) 

N i = j0rcR 2. 

The same relationship is arrived at, with exact ex- 
pressions for the functions K(x) and K2(x). A similar 
result is qualitatively explained in [7]. 

At c~ ~ 1 the expressions for l(x) and N become 
rather cumbersome. Numerical calculations were per- 
formed for ice at T o = 213°K, with approximate func- 
tions K(x), Kl(x) and K2(x ) being used. 
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fl = 0, i.e. of an isothermal capillary, evaporation 
/ / -  a=o.s occurs along the whole of its length and the flow J 

attains its maximum value at x = 1. 
For s = 1 we have 

" •  
j _  . . . . .  -2-o7~ 

1111/~ 
/ a =0"8 

c = 0 ' [  

2 4 6 8 lO 

{ 

FIG. h Flow N at the capillary exit vs I 
with diffuse reflection (To = 21YK, l = 

10 -1 c m ) - - - A T  = 0 c ; -  AT = -10. 

J(x) = ½exp{ - lx}[(z  3 - / (1  -x) )exp{21x}  -½] ,  (10a) 

where s = - l  

J(x) = ½exp{ - Ix} [½(1 + exp{2l(x-  1)} - lx]. (10b) 

From (10a) it is seen that for l < l  J ( 0 ) > 0  and 
J(1) > 0, i.e. evaporation takes place at both ends of 
the capillary and at l > 1 J(0) < 0, J(1) > 0, i.e. with 
increasing x transition from condensation to evap- 
oration occurs. 

Expression (10b) indicates that for all I at x - - 0  
evaporation occurs, for x = l evaporation takes place 
at l < 1 and condensation, at l > 1. 

When evaporation proceeds only at the bottom with 
diffuse reflection of molecules from the lateral sur- 
face, the flow I may be obtained from (1) assuming 
0 ~ = 0 .  

The calculations showed that for c~ # 1 and AT = 0 
the flow at the capillary exit at small I increases with l, 
and then practically becomes independent of 1 (Fig. 1). 
In case of a # 1 AT # 0 the behaviour of the curves 
characterizing the flow dependence on / was more 
complicated. 

At the lateral surface the net dimensionless flow of 
molecules is determined by 

--J(x)  = I ( x ) - l ( x )  = ~ [ l - ( x ) - e x p { s x } ] .  (7) 

where I is a flow of molecules getting onto unit lateral 
surface. I is sought from the equation 

fo' I - (x )  = l ( ~ ) K l ( l x - ~ l ) d ~ + I o K ( x  ). (8) 

Upon determining I from (1), we shall calculate l -  
from (8) and then the net molecular flow from (7). 

Write the flow J(x) for a particular case of ~ = 1 
omitting a cumbersome general formula. At s # + 1 

= lexp{ - l x }  [ <  exp {(fi + _  J(x) |/~ rex} 

1 e x p { l ( 2 x + f i - 1 ) } -  fl 1 
-fl---1 / ~ ,  (9) 

where fl = s/l, and the positive value of J corresponds 
to evaporation. 

It follows from (9) that the behaviour of J(x) is 
determined by I and ft. Thus for 1 < fl < exp{/(fl-  1)} 
at x = 0 J < 0, at x = 1 J > 0. As to the case of 

(b) Elucidate the effect of specular reflection of molecules 
on the net flow at the capillary exit 

The number of molecules that evaporated from the 
side surface and left the capillary after multiple specular 
reflections, is written as follows [8] 

i 
1 

N w = 2~R21 j(~, T)SI(1 - x ) d x ,  (11) 
do 

where 

For the number of molecules evaporated from the 
bottom, then multiply reflected from the walls and 
left the capillary obtain (by assuming ~0 = c0 

N b = nR2j(a, To)S2(1), (12) 

where 

S2(x )=Kz(x )+  (1-~)"  K 2 n ~ l  - K 2  ' 
n = l  

Besides, the account should be taken of the molecules 
which left the capillary after they had evaporated from 
the lateral surface, got to the bottom and reflected 
specularly from it. They are allowed for approximately 
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through substitution by the diffusely reflected mol- 
ecules 

j" N'~ = 2~R2lS2(1)(1-~) j(~, T)SI(x)dx. (13) 
o 

The flow at the capillary exit is determined by 
summation of (11)-(13). 

It follows from the calculation results for diffuse 
and specular reflections that at small l the values of 
exit flows are similar. In case of specular reflection 
with increasing / the rate of flow increase is higher 
than with diffuse reflection. 

The case of the bottom evaporation with specular 
reflection from the bottom and diffuse reflection from 
the side surface is considered in the second part of 
the manuscript. 

2. S U R F A C E  D I F F U S I O N  E F F E C T  O N  F R E E - M O L E C U L A R  

V A P O U R  F L O W  T H R O U G H  A C A P I L L A R Y  

Experimental investigation of gas flows in capillaries 
at free-molecular regime revealed the difference be- 
tween the conductivity measured and that calculated 
by the Knudsen formula. One of the reasons of this 
difference is surface diffusion [9]. The latter is explained 
by the fact that at low density the molecules adsorbed 
on the surface may be considered as two-dimensional 
gas and thus in the presence of the density gradient 
a two-dimensional diffusion flow takes place which is 
described by 

dn 
s~ = - D d  2.  

Some works are known with account taken of the 
surface diffusion effect. Thus, in [10] the problem is 
considered on the Knudsen flow in a long tube with 
surface diffusion flow, wherein the effect of surface 
diffusion due to linear dependence of the surface 
density on the coordinate shows itself through con- 
tribution of this flow to the Knudsen flow. 

In other works an integro-differential equation is 
solved for the surface density of molecules which in a 
limited case of no surface diffusion transits into the 
integral Klausing equation. In [ l l ] ,  particularly, the 
solution of this equation is built by the iteration 
method for the case of a short capillary (1 = L/R << l) 
and in [5, 12] a similar problem is solved numerically 
for any/ .  In these studies, however, no investigation 
is made of the effect of different terms in the integro- 
differential equation on the capillary conductivity. 

This part of the manuscript deals with an approxi- 
mate analytical investigation of a free-molecular 
vapour flow with regard for surface diffusion in a 
cylindrical capillary bounded by a flat surface of 
evaporating liquid from one side (X = 0) and connected 
with the tank filled with the vapours of this liquid, 

from the other (X = L). The surface of liquid is char- 
acterized by the specular reflection coefficient a. 

An integro-differential equation for the surface 
density of molecules is of the form 

1 d [ d n l = , ~ : , ; ) _ l " n ( { }  
Li d~x D'(X) dx z(x) jo r(~) 

[ K l ( I x - g  I)+ aK,(x + ~)] d~ - N-° K(x) - N, (14) 
YI 0 /10 

[K(1 -x )+  GK(I +x)]. 

Here N o and N 1 are flows of molecules diffused from 
the unit surface of the bottom and of those from the 
tank passed through a unit area of the open end, 
respectively. 

In equation (14) the term in the left-hand side is 
specified by the surface diffusion of molecules. The 
integral term in the right-hand side corresponds to the 
flow of molecules falling per unit surface of the capillary 
side from the remaining surface as a result of desorp- 
tion by the cosine law (the first summand) and of 
specular reflection from the bottom (the second 
summand). 

The first term out of the integral sign describes a 
flow of molecules diffusing from the bottom and falling 
per unit surface of a capillary, the second and third 
terms are flows of molecules entering the capillary 
through the open end and falling onto the wall directly 
and after specular reflection from the bottom. 

We shall formulate the boundary conditions for 
integro-differential equation (14). It should be noted 
that surface diffusion takes place not only in a capillary 
but on an internal surface of the tank as well. In this 
case it is considered that at a distance of the order of 
X = l / x / ~  ~ adsorption equilibrium is achieved on the 
tank surface, i.e. the density of molecules (dimentional) 
is determined by 

r~ e = NI"C 1 . 

Then for the open end of the capillary, with account 
taken of the conjugation conditions (equality of den- 
sities and fluxes) on the capillary-tank interface, the 
following condition of the third kind may be written 

dn = L ~ 1 1 ( 1 1  e - I1), (15) 
dx 

where 
1 

E t - 
zl(l)Ds(1) 

For correct formulation of the boundary condition 
at x = 0 the values characterizing the kinetics of two- 
dimensional evaporation should be prescribed [13]. 
Since there are no such data available in the literature, 
the use is made of the following condition 

n(0) = 1. (16) 
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The flows N o and N~ have been determined by the 
formulae 

Pe Pl 
N O = (1 - a) (2nm-k-To)l/2, N 1 (2rcmkT1)l/2 

(a) Isothermal case 
Assuming r = const, D~ = const and substituting 

K(x) by the exponent, from (14) we get 

d2n I f o  G L ~  = n ( x ) - ~  n ( ~ ) [ e x p { - l [ x - ~ l }  

No~ 
+ ~r exp{ - l(x + ¢)}] d~ - 2 ~  ° exp{ - Ix} 

N 1 -r 
2no [exp{- l (1  -x )}  + crexp{-/(1 +x)}],  (17) 

where 

A. V. Lu1Kov, T. L. PERELMAN, V. V. LEVDANSKY, V. G. LEITSINA and N. V. PAVLYUKEVICH 

1 
G L - EL 2 • 

It follows from (17) that the larger the dimensionless 
parameter G L, the greater contribution of the surface 
diffusion into n distribution over the capillary surface. 
In particular, at G c >> 1 the density n is found by 
solution of the equation 

d2n 
- - ~ 0  
dx 2 

with boundary conditions (15) and (16), i.e. it varies 
linearily 

n = l + Bx, B =  Lx/ -~(ne-1)  
1 + Lx/~-  

On the other hand, in case of G L << 1 equation (17) 
possesses a minor parameter at a major derivative. 
Therefore, at any infinitesimal values of GL at the 
capillary ends the regions (boundary layers) exist 
where a differential term in equation (17) should be 
regarded for, i.e. the minor parameter method being 
used, the disturbed solution will not be equally ap- 
plicable for the whole range of x variation. This non- 
uniformity is known [14] to be displayed when the 
perturbation parameter is a ratio of two lengths. In 
the present problem G 1/2 is a ratio of the mean square 

displacement of a particle over the surface 1/x/E-to 
the capillary length L. 

To solve equation (17) it is differentiated twice 
over x. Combination of the expression obtained with 
initial equation (17) yields 

d4n 2d2n = 0, c 2 = 12+G[. 1. (18) 
dx 4 cl dx ~ 

Solution of equation (18) is written as follows 

n = a 1 exp{ - c x x  } + a 2 e x p { - q ( 1  -x )}  

+ a 3 x + a  4. (19) 

By substituting (19) into (18) and equat ing the co- 
efficients at exp{- /x}  and exp{lx}, we obtain two 
equations for a 1, a 2, a 3 and a 4 determination. Two 
other equations are sought from boundary coffditions 
(15) and (16). Hence, to calculate four unknown co- 
efficients a system of four linear equations should 
be solved 

a l l [ 1 - ~ + 2 ~ ( e x p { - ( c l  + l ) } -  l) 1 

l 1 a 

+ y [ - a 3  1 - ty  + a exp{ - l} (l+ 1)] 

17 
+a4( l  -or+or exp{- l} )  = ~ ( N o + ~ N  ~ exp{- l}) ,  

la a . la z . I+ 1 Ni z 
l + cl eXp{ - c l }  ± l ~ l  , a3 - ~ - +  a,, - no ' 

a 1 exp{ - ci }(1 - c, G~/2) + a 2 (1 + c~ G 1/2) 

+ a3( l + G[/2) + a~ = n e, 

al + a 2 e x p { - q } + a  4 = 1 .  (20) 

To investigate the solution obtained, numerical 
calculations have been performed. Of particular interest 
is the case of G L << 1 (note that for G L = 0 solution of 
equation (17) is a linear function). As it could be 
expected, for such values of G L the existence of bound- 
ary layers is distinctly seen at the capillary ends and 
in the middle the curve n(x) transits into a. linear 
function (Fig. 2) whose slope coincides with that of a 
straight line being a solution of equation (14) at G L = 0. 
The explanation is that in this range the right-hand 
side of equation (17) makes a major contribution into 
its solution. This peculiarity of the dependence of n on x 
at GL << 1 is seen in the figure where the results of 

I'O I 

n 0.5 C =  0 

o 0.5 i 
X 

FIG. 2. Surface density of molecules vs 
longitudinal coordinate. 
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numerical calculations are presented for water with the 
following parameters: G L = 4 x 10-3; / = 0.1; o- = 0 
and 0'8; T = 300°K; p~ = 3430N/m2; p~ = 490N/m 2. 

As to the flows in case of G L being of the order of 
unity, the curve n(x) cannot be divided into three zones. 

The net flow of molecules at the capillary exit is 
equal to the sum of surface diffusion flow N~{1)= 
2~zRJ~(1) and flow of molecules N(1) emitting through 
the open end of the capillary. It should be kept in 
mind that at G R >> 1, N s >> N and at (;~ << 1 N~ << N 
(since G~ = 1/ER 2 characterizes the ratio of conduc- 
tivities due to surface and Knudsen diffusion). 

The expression for N is of the form 

N = 7rR2{NoK2(1)- N~[1 -aK2(2) ] '  , 

2rcR2no I f l  
+ n ( x ) [ K ( 1 - x ) + a K ( l + x ) ] d x .  (21) 

T J0 
Here the first term describes a flow of molecules 

that diffused from the bottom and covered the distance 
L without collisions. The second term is a flow of 
molecules entering the capillary through the open end. 
The third term stands for a flow of molecules which 
reached the bottom without collisions, reflected specu- 
larly from it and then emitted through the open end. 
The integral term characterizes the flow of molecules 
desorbed by the internal surface of the capillary and 
left it without collision against the wall and after 
specular reflection from the bottom. 

The comparison of the approximate analytical solu- 
tion of equation (14) and its numerical solution for 
the exact function K(x) has shown that there is but 
slight difference between the values of n(x) correspond- 
ing to exact and approximate expressions for K(x), 
this difference increasing with decrease of G L and 
increase of/. As for the appropriated values of N, they 
differ from one another in a greater degree than those 
of n(x) do. 

In (21), in order to decrease the calculation errors, 
an exact solution for the function K(x) should be used 
rather than an approximate one. For G~ << 1, however, 
integration of the terms with a~ and a 2 yields a small 
contribution into the value of N. To simplify in- 
tegration, therefore, in (21) an approximate exponential 
expression for K(x) may be particularly used (in the 
summands including a 1 and a2). 

With no surface diffusion, we have for N relation- 
ship (21) wherein n(x) is the solution to integral 
equation (17) at G~, = 0 with an exponential kernel, 
i.e. it is a linear function. This allows easy calculation 
of the integral term in (21) with exact kernel K(x). 
In case of L > R and N~ = 0, particularly, obtained 
within R2/L 2 

7 R N O (1 

N = ~  L 1_o .+2  R \ 7 L]  

L 

9 6 7  

This expression is a generalization of the known 
Knudsen formula [15] for the case of evaporation 
from a finite length capillary. To compare, it should 
be noted that the exact Knudsen formula (L/R >> 1, 
o-= 0) includes coefficient 8/3, and when the expo- 
nential kernel is used in (21), coellicient 2. 

(b) Nonisothermal case 
The values r and D~ are related with the surface 

temperature as follows [9] 

u , D~=D~oexp - r = z 0 exp ) " kT(x 

Assume that T = 7o(1 +Ax)  and A << 1. Then lin- 
earization and substitution of the variable 

nx(X) = n(xjexp - 

reduce.equation for n~ to the form similar to that in 
case of an isothermal capillary except for the fact that 
in the left-hand side a term containing the first wtriable 
dn~/dx appears. Herein, the ratio of the coefficients 
of the lirst and second derivatives 

AT ~: 2u 

7'0 kT;~ 

Since from an approximate analysis [9] follows that 
1 2 <~ ,:/u ~ 3, and u/k T o >> 1, the order of the magnitude 
of 7 is equal to A T / 7 ) ) x u / k T  o. If ?,-~ 1, then at 
GL(0) << 1, i.e. in case of short boundary layers the term 
containing the second deriwttive is much greater than 
the summand with the lirst derivative. Hence, the 
solution of the equation for ~h can be presented in 
the form 

i.e. 

ni(xlro 

"Ei 

" ) /  n~IxlrIx) 
n(x) -~ nl(x)ex p h"l'(i~: z i (22) 

everywhere but in the nearest vicinity of the open end 
(where the temperature Tt effect appears due to the 
boundary condition at the exit (15)). 

The flow N at the capillary exit is expressed by the 
formula differing from [21) only by 1/r(x) includcd in 
the subintcgral expression. Bccause of relationship {22), 
nonisothermity has almost no ell'oct on the integral 
for IAI << 1. The tirst summand in (21) depends only 
on To. Two other ones containing the tlow N~ depend 
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on 7'1-1/2 but since T 1 = To(I+A ) and IAI<< 1 this 
dependence is not significant. At low temperature 
drop the flow N, therefore, is independent of the non- 
isothermity, while the surface densities n(x) for A = 0 
and A :~ 0 are essentially different. Hence, in a non- 
isothermal case the net molecular flow N +  N~ differs 
from the appropriate flow in an isothermal capillary 
[since N~ = - [2~zD~(1)no/I ] [dn/dx](1)}. 

The numerical solution to equation (14) for the case 
of ice evaporation showed the validity of the above 
considerations and expression (22), in particular. As 
to the cases of GL(0) ~ 1, i.e. the absence of boundary 
layers, and of I A I ~  1, i.e. high temperature drops, 
equation (14) was solved numerically to determine n(x) 
and N. 

and, with the above in view, is of the form 

2Flctp e 1 ~ L 
N = [(2~m__m~t/z ~_4fl_=n)[Lf0 n'(g)v 

p(]) L - 
-~ (2rcmkT)l/z. E 3 ( ~ ) l t  E 3 ( x L - )  

+ L [ ~'_n;(:)v E 2 ( L ( x _ ~ j ~ d g _ L [  1 n'(~!v 
Jo 22 \ 2  / d:, 22 

E 2 ( ~ - x )  d?, (2rrmkT)l/2 

[L(1-x)~ 
X /2,3 ~ - - ~ ,  (23) 

3. THE KINETICS OF VAPOUR TRANSFER 
THROUGH A POROUS BODY 

We shall consider a plane-parallel layer of a high- 
dispersed porous body limited with evaporating liquid 
from below and with its vapours from above. The 
system is under isothermal conditions. 

The transient vapour flow regime that is often 
encountered in technological processes is the most 
complicated to be theoretically described. Consider 
the vapour flow through a dry layer of a porous body 
by representing the porous body-gas system as binary 
mixture. The molecules of one of the components are 
fixed, their sizes and mass greatly exceed the sizes and 
mass of the second component (real gas) [16-18]. 

The account is taken of, that the possibility of 
covering the distance X by a molecule without collision 
is exp[ - (X/2)]  [19], Below it is assumed that the free 
molecular path length is constant. In the model under 
consideration 2 is of the form [19, 20] 

1 I I 
- I- 

"~ 211 ~'12' 

where 211 is free path length of real molecules relative 
to the molecules themselves; 212 is free path length o f  
real molecules relative to fixed molecules. When deter- 
mining ~-12 the account should be taken of the proper 
volume of fixed molecules and the possibility of their 
mutual overlapping. 

Consider the interface between evaporating liquid 
and porous body. The evaporating liquid occupies the 
portion H of the whole surface area. The part of the 
surface I - F I  is occupied with solid particles of the 
porous body and reflects diffusely all the molecules 
that fell on it. 

The total flow of molecules passing through the dry 
layer of porous body in the direction of the axis X 
consists of the difference between the number of mol- 
ecules flying upwards and those flying downwards. At 
steady state this flow does not depend on the coordinate 

where 

In equation (23) the first four terms present the 
number of molecules passing upwards through the 
plane yz being at a distance of X from the liquid 
surface. They include evaporated molecules, those 
scattered in the layer between the evaporating sur- 
face and the plane yz, the molecules which scattered 
in the layer with the thickness L, fell onto the bound- 
ary surface and diffusely reflected from it, and the 
molecules from the volume over the porous body 
diffusely reflected from the boundary surface. Two last 
terms are the molecules from the gas medium over 
the porous body and those collided in the porous body 
of thickness L-X.  

Equation (24) when being in a general form fails to 
be solved. Therefore, the functions E z and E 3 are sub- 
stituted by exponential functions similarly to [21]. 

By differentiating twice equation (23) and combining 
the expression obtained with the initial one, we arrive 
at a differential equation for the molecular density. 
From the equation derived and (23) obtain the ex- 
pression for a flow of molecules 

42FI~ Pe -p(1)  
U - (24) 

(2r~mkT) 1/2 42 + 3L~FI" 

At 2/L ~ oo find from (24) an expression for evap- 
oration from flee surface 

N O = o:Fl G - P  
(2rcmk T)l/2 " 

At 2/L--,O we get an ordinary expression for a 
diffusion flow if in the given diffusional approximation, 
it is assumed that n~ ~ n(0): 

1 n ' ( l )  - n ' ( 0 )  
N = - ~  v2 L 
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In a t ransient  case, a f low of part icles depends  on 5. 
the coord ina te  and  time. Cons ider  the case when 

e l i  = 1. U n d e r  ze ro th  initial cond i t ions  with the use of  6. 

the Laplace  t r ans fo rma t ion  and  the assumpt ions  made  

when  solving equa t ion  (23), it is easy to show that  the 7. 
equa t ion  for a flow of  molecules  in d imensionless  

coord ina tes  (t 1 = t/t*, t* is character is t ic  t ime of the 8. 
p rob lem)  is o f  the form 

4[2"~2c72N [ 2  ~2(p2N 9. 

9 ~ T )  ~ x 2  -t-~c~ * )  i~t~ 10. 

2 ?N 1 2 ~n' 11. 
+ N + 2 c t *  P t ~ -  3V-L ?~ .  (25) 

Since 2/L and  2/ct* are usually small, we retain in the 12. 

equa t ion  the te rms  of  the first o rder  of  smallness. Then 

equa t ion  (25) takes the form 
13. 

2 ['N 1 2 ~n' 
N = - 2  v 14. 

ct* dt* 3 L ?x* 

where  the first te rm from the right accounts  for the 15. 

finite velocity of  mass  p ropaga t i on  c [1]. 16. 

17. 
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ETUDE EXPERIMENTALE DU TRANSFERT DE VAPEUR 
A TRAVERS UN CORPS POREUX 

R~sum~ Dans la premi6re partie de I'article on 6tudic l'dvaporation capillaire dans des conditions de 
r6gime mol6culaire fibre pour un cas non isotherme, en supposant que l'6vaporation se fait ~ la fois sur 
la surface lat6rale et sur le fond. On consid6re deux modes de r6flexion sur la surface, soit diffus soit 
sp6culaire. Dans les deux cas on obtient des expressions approch6es des flux de mol6cules fi la sortie du 
milieu capillaire. Darts le cas de la r6flexion diffuse, on obtient h la lois le flux de mol6cules quittant 
l'unit6 de surface et le flux net surfacique. On 6tudie la transition de phase a la paroi en fonction d'une 
longueur adimensionnelle et dc la chute dcpression. 

Dans la seconde partie, on montre que I'effet de la diffusion cn surface, sur la conductivit6 capillaire 
est d6termin6 par lc param6tre adimensionnel (;L dgal an rapport de la racine carr6e de la moyenne 
quadratique du d6placement d'une moldcule en surface, il la longueur capillaire. On traite l',Squation 
int6gro-diff6rentielle initiale. 

Dans la troisi6me partie bas6e sur la th6oric aFprochdc d[i libre parcours moyen, on trouvc une 
expression pour un 6coulement de vapeur ,l travers un corps poreux fortement dispers6 quand le mod+le 

capillaire n'est plus exact. 
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THEORET1SCHE U N T E R S U C H U N G  DER D A M P F U B E R T R A G U N G  
D U R C H  EINEN K A P I L L A R - P O R O S E N  KORPER 

Zusammenfassung lm ersten Teil der Arbeit wird eine Untersuchung der kapillaren Verdampfung unter 
der Bedingung freier Molekularbewegung fiir einen nicht isothermen Fall behandelt, wobei vorausgesetzt 
isL dab die Verdampfung an der Seitenwand und am Boden stattfindet. Zwei A r t e n d e r  Reflexionen 
yon der Obcrfl~ichc, diffus und spiegelnd, werden betrachtet. Ftir beide F~ille werden N~iherungsbezie- 
hungen fiir den Molekularstrom am Kapillarende abgeleitet. Im Fall der diffusen Reflexion st immen 
dcr Molekularstrom an den Seitenfl~ichen und der rcine Oberfl~ichenstrom iiberein. Dieser Ausdruck 
crlaubt Untersuchungen des Phaseniiberganges an der Wand, dcr yon der dimensionslosen L~inge und 
dcr Temperaturdiffcrenz abh~ingt. 

Im zweiten Tell wird gezeigt, dab die Wirkung der Oberfl~ichendiffusion auf die kapillare Leitf'~ihigkeit 
durch den dimensionslosen Parameter GL bestimmt wird, der gleich dem Quadrat  des Verh~iltnisses 
yon mittlerer quadratischer Verschiebung eines Moleki~ls tiber die Oberff, iche zur Kapillarl~inge ist; dies 
erg~,inzt die friihere Ableitung der integralen Differentialgleichung in ihrer Ausgangsform. Im dritten 
Tell wird. wenn das Kapillarmodell zu ungenau ist, mit der N:dhcrungstheorie einer mittleren freien, 
molekularen Wegl~inge eine Beziehung fiir einen Dampfst rom dutch einen hoch dispersen, por•sen 

K 6rper angegeben. 

T E O P E T H q E C K O E  H C C J I E ~ O B A H H E  FIPOLI, ECCA FIEPEHOCA H A P A  q E P E 3  
KA F1H.fl.fl Yl PHO- FI O PEICTOE TEfIO 

AHaorauna - -  B FI(2pBOI71 UaCTH Hccne~onauo HcnapenHe H3 KanHnn~pa B yCflOBHflX CBO60]IHOMOJ~eKy- 
qflpHoro pe~HMa 2L~n HeH3oTepMH~eCKOFO cayuafl U npe~noJ~o~eHHH, UTO ~cnapeH~e npoHcxo~HT 
KaK Ha 6OKOBOH noBepXHOCTH, TaK H Ha £tHe. PaCCMOTpeHb~ ~Be CXeMbl oTpah~eHHS OT FIOBepXHOCTH - -  
ztH~bc~)y3uafl H 3epKant, na~. B o6oHx cay~aflx noJly~eHbJ npHOnnZ~eHHble Bblpa)KeHH~ ;1J1~ nOTOKOB 
MOdleKyfl Ha BblXOLle 143 Kannnn~pa,  a npH dll4qb~by3HOM oTpa)KenHn HaHdleHbl TaK)Ke HOTOK MoJleKyYi, 
BbIYleTatOtttHX C e~HHHIIbl ~OKOBOId HoBepXHOCTH, H pe3yYIbTHpylolllH!~ HOTOK Ha FIOBepXHOCTH. 
FlocJiemme Bblpa>KeHHe FIO3BOJ]HflO HCcJleZIOBaTb xapaKTep ~ba3OBOFO n e p e x o h a  Ha CTeHKe B 3aBHCH- 
MOCTH OT 6e3pa3MepHblX ~flmlbE H TeMnepaTypHoro nepenana.  

Bo BTOpO~ ~IaCTH pa6oTb~ noKa3aHo, ~TO BJ~HflHHe HoBepXHOCTHO~ ~IH~Oy3HH Ha rIpOBOJlHMOCTb 
Kanna,~flpa onpeae.qneTcn 6e3pa3Mepnb~M napaMeTpoM GL, paBHBIM KBaapaTy OTHOIJJeHHfl cpe~ne- 
UBa~]paTn~noro cMemenH~ MOneKy.~b~ no noBepxHOCTn K ~lJmne KanHJ~n~pa ~ CTOflLL[HM nepezt 
c rapme~ npon3Bo~no~ B ,CXO~HOM HnTerpo-~n~bdpepeHuHaJ~bnOM ypaBneUHn. 

B ~rpeTbe~ ~aCTH paOoTbl Ha ocnoBe npn6J3mKeHno~ TeopHH cpenHei~ ~lnnnb~ CBO6O;~noconpo6era 
H a ~ e n o  Bb~pa~KeHHe ~iJ~ nOTOKa napa ~epe~ BblCOKO~lHcnepcHoe nopncfoe  TeJ]o, KOF~la Kannnn~pna~ 

MO2I~2~b ~tBdlfteTC~t HeTOtlHO~. 


